Regularization matrices for discrete ill‐posed problems in several space dimensions
نویسندگان
چکیده
منابع مشابه
Fractional regularization matrices for linear discrete ill-posed problems
The numerical solution of linear discrete ill-posed problems typically requires regularization. Two of the most popular regularization methods are due to Tikhonov and Lavrentiev. These methods require the choice of a regularization matrix. Common choices include the identity matrix and finite difference approximations of a derivative operator. It is the purpose of the present paper to explore t...
متن کاملSquare regularization matrices for large linear discrete ill-posed problems
Large linear discrete ill-posed problems with contaminated data are often solved with the aid of Tikhonov regularization. Commonly used regularization matrices are finite difference approximations of a suitable derivative and are rectangular. This paper discusses the design of square regularization matrices that can be used in iterative methods based on the Arnoldi process for large-scale Tikho...
متن کاملRegularization of Nonlinear Illposed Problems with Closed Operators
In this paper Tikhonov regularization for nonlinear illposed problems is investigated. The regularization term is characterized by a closed linear operator, permitting seminorm regularization in applications. Results for existence, stability, convergence and convergence rates of the solution of the regularized problem in terms of the noise level are given. An illustrating example involving para...
متن کاملRegularization parameter determination for discrete ill-posed problems
Straightforward solution of discrete ill-posed linear systems of equations or leastsquares problems with error-contaminated data does not, in general, give meaningful results, because propagated error destroys the computed solution. The problems have to be modified to reduce their sensitivity to the error in the data. The amount of modification is determined by a regularization parameter. It ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Linear Algebra with Applications
سال: 2018
ISSN: 1070-5325,1099-1506
DOI: 10.1002/nla.2163